MHCPred: a server for quantitative prediction of peptide-MHC binding

نویسندگان

  • Pingping Guan
  • Irini A. Doytchinova
  • Christianna Zygouri
  • Darren R. Flower
چکیده

Accurate T-cell epitope prediction is a principal objective of computational vaccinology. As a service to the immunology and vaccinology communities at large, we have implemented, as a server on the World Wide Web, a partial least squares-based multivariate statistical approach to the quantitative prediction of peptide binding to major histocom- patibility complexes (MHC), the key checkpoint on the antigen presentation pathway within adaptive cellular immunity. MHCPred implements robust statistical models for both Class I alleles (HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II alleles (HLA-DRB*0401, HLA-DRB*0401 and HLA-DRB*0701). MHCPred is available from the URL: http://www.jenner.ac.uk/MHCPred.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.

Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementa...

متن کامل

ProPred1: Prediction of Promiscuous MHC Class-I Binding Sites

SUMMARY ProPred1 is an on-line web tool for the prediction of peptide binding to MHC class-I alleles. This is a matrix-based method that allows the prediction of MHC binding sites in an antigenic sequence for 47 MHC class-I alleles. The server represents MHC binding regions within an antigenic sequence in user-friendly formats. These formats assist user in the identification of promiscuous MHC ...

متن کامل

SVMHC: a server for prediction of MHC-binding peptides

Identification of MHC-binding peptides is a prerequisite in rational design of T-cell based peptide vaccines. During the past decade a number of computational approaches have been introduced for the prediction of MHC-binding peptides, efficiently reducing the number of candidate binders that need to be experimentally verified. Here the SVMHC server for prediction of both MHC class I and class I...

متن کامل

Toward Prediction of Class II Mouse Major Histocompatibility Complex Peptide Binding Affinity: in Silico Bioinformatic Evaluation Using Partial Least Squares, a Robust Multivariate Statistical Technique

The accurate identification of T-cell epitopes remains a principal goal of bioinformatics within immunology. As the immunogenicity of peptide epitopes is dependent on their binding to major histocompatibility complex (MHC) molecules, the prediction of binding affinity is a prerequisite to the reliable prediction of epitopes. The iterative self-consistent (ISC) partial-least-squares (PLS)-based ...

متن کامل

Simulation of Major Histocompatibility Complex (MHC) Structure and Peptide Loading into an MHC Binding Pocket with Teachers’Hands

Molecular understanding of three-dimensional (3D) peptide: MHC models require both basic knowledge of computational modeling and skilled visual perception, which are not possessed by all students. The present model aims to simulate MHC molecular structure with the hands and make a profound impression on the students.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 31 13  شماره 

صفحات  -

تاریخ انتشار 2003